One Stage Deviation Principle in Continuous Stochastic Games

Abstract

In this paper, we consider McKean-Vlasov stochastic differential equations (MVSDEs) driven by Lévy noise. By identifying the right equations satisfied by the solutions of the MVSDEs with shifted driving Lévy noise, we build up a framework to fully apply the weak convergence method to establish large and moderate deviation principles for MVSDEs. In the case of ordinary SDEs, the rate function is calculated by using the solutions of the corresponding skeleton equations simply replacing the noise by the elements of the Cameron-Martin space. It turns out that the correct rate function for MVSDEs is defined through the solutions of skeleton equations replacing the noise by smooth functions and replacing the distributions involved in the equation by the distribution of the solution of the corresponding deterministic equation (without the noise). This is somehow surprising. With this approach, we obtain large and moderate deviation principles for much wider classes of MVSDEs in comparison with the existing literature see Dos Reis et al. (Ann. Appl. Probab. 29, 1487–1540, 2019).

Access options

Buy single article

Instant access to the full article PDF.

39,95 €

Price includes VAT (Indonesia)

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Adams, D., Reis, G.D., Ravaille, R., Salkeld, W., Tugaut, J.: Large Deviations and Exit-times for reflected McKean-Vlasov equations with self-stabilizing terms and superlinear drifts. arXiv:https://arxiv.org/abs/2005.10057v1 (2020)

  2. Andreis, L., Dai Pra, P., Fischer, M.: Mckean-vlasov limit for interacting systems with simultaneous jumps. Stoch. Anal. Appl. 36, 960–995 (2018)

    MathSciNet  MATH  Article  Google Scholar

  3. Budhiraja, A., Dupuis, P., Ganguly, A.: Moderate Deviation Principles for Stochastic Differential Equations with Jumps, arXiv:https://arxiv.org/abs/1401.7316v1

  4. Budhiraja, A., Dupuis, P., Ganguly, A.: Moderate deviation principles for stochastic differential equations with jumps. Ann. Probab. 44, 1723–1775 (2016)

    MathSciNet  MATH  Article  Google Scholar

  5. Budhiraja, A., Dupuis, P.: Analysis and approximation of rare events: representations and weak convergence methods. Probability Theory and Stochastic Modeling, Volume 94 Springer (2019)

  6. Budhiraja, A., Dupuis, P., Maroulas, V.: Variational representations for continuous time processes. Ann. Inst. Henri poincaré, Probab. Stat. 47, 725–747 (2011)

    MathSciNet  MATH  Article  Google Scholar

  7. Budhiraja, A., Dupuis, P.: A variational representation for positive functionals of an infinite dimensional Brownian motion. Probab. Math. Stat. 20, 39–61 (2000)

    MathSciNet  MATH  Google Scholar

  8. Budhiraja, A., Dupuis, P., Maroulas, V.: Large deviations for infinite dimensional stochastic dynamical systems continuous time processes. Ann. Probab. 36, 1390–1420 (2008)

    MathSciNet  MATH  Article  Google Scholar

  9. Budhiraja, A., Chen, J., Dupuis, P.: Large deviations for stochastic partial differential equations driven by a Poisson random measure. Stoch. Proc. Appl. 123, 523–560 (2013)

    MathSciNet  MATH  Article  Google Scholar

  10. Brzeźniak, Z., Peng, X., Zhai, J.: Well-posedness and large deviations for 2-D Stochastic Navier-Stokes equations with jumps. arXiv:https://arxiv.org/abs/arXiv:1908.06228 (2019)

  11. Brzeźniak, Z., Manna, U., Zhai, J.: Large Deviations for a Stochastic Landau-Lifshitz-Gilbert Equation Driven by Pure Jump Noise. in preparation

  12. Barbu, V., Röckner, M.: From nonlinear Fokker-Planck equations to solutions of distribution dependent SDE. Ann. Probab. 48, 1902–1920 (2020)

    MathSciNet  MATH  Article  Google Scholar

  13. Buckdahn, R., Li, J., Peng, S., Rainer, C.: Mean-field stochastic differential equations and associated PDEs. Ann. Probab. 45, 824–878 (2017)

    MathSciNet  MATH  Article  Google Scholar

  14. Brzeniak, Z., Goldys, B., Jegaraj, T.: Large deviations and transitions between equilibria for stochastic Landau-Lifshitz-Gilbert equation. Arch. Ration. Mech. Anal. 226(2), 497–558 (2017)

    MathSciNet  MATH  Article  Google Scholar

  15. Cai, Y., Huang, J., Maroulas, V.: Large deviations of mean-field stochastic differential equations with jumps. Statist. Probab. Lett. 96, 1–9 (2015)

    MathSciNet  MATH  Article  Google Scholar

  16. Da Prato, G., Flandoli, F., Priola, E., Röckner, M.: Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. Ann. Probab. 41(5), 3306–3344 (2013)

    MathSciNet  MATH  Article  Google Scholar

  17. Dong, Z., Xiong, J., Zhai, J., Zhang, T.: A moderate deviation principle for 2-D stochastic Navier-Stokes equations driven by multiplicative lévy noises. J. Funct. Anal. 272, 227–254 (2017)

    MathSciNet  MATH  Article  Google Scholar

  18. Dong, Z., Zhai, J., Zhang, R.: Large deviation principles for 3D stochastic primitive equations. J. Differential Equations 263(5), 3110–3146 (2017)

    MathSciNet  MATH  Article  Google Scholar

  19. Dong, Z., Wu, J., Zhang, R., Zhang, T.: Large deviation principles for first-order scalar conservation laws with stochastic forcing. Ann. Appl. Probab. 30(1), 324–367 (2020)

    MathSciNet  MATH  Article  Google Scholar

  20. Dos Reis, G., Salkeld, W., Tugaut, J.: Freidlin-wentzell LDPs in path space for McKean-Vlasov equations and the functional iterated logarithm law. Ann. Appl. Probab. 29, 1487–1540 (2019)

    MathSciNet  MATH  Article  Google Scholar

  21. Durmus, A., Eberle, A., Guillin, A., Zimmer, R.: An elementary approach to uniform in Time propagation of chaos. Proc. Amer. Math. Soc. 148, 5387–5398 (2020)

    MathSciNet  MATH  Article  Google Scholar

  22. Eberle, A.: Reflection couplings contraction rates for diffusions. Probab. Theory Relat. Fields 166, 851–886 (2016)

    MathSciNet  MATH  Article  Google Scholar

  23. Eberle, A., Guillin, A., Zimmer, R.: Quantitative Harris type theorems for diffusions and McKean-Vlasov processes. Trans. Amer. Math. Soc. 371, 7135–7173 (2019)

    MathSciNet  MATH  Article  Google Scholar

  24. Guillin, A., Liu, W., Wu, L., Zhang, C.: Poincaré and logarithmic Sobolev inequalities for particles in mean field interactions. arXiv:https://arxiv.org/abs/1909.07051, to appear in Annals of applied probability

  25. Guillin, A., Liu, W., Wu, L., Zhang, C.: The kinetic Fokker-Planck equation with mean field interaction. J. Math. Pures Appl. 150, 1–23 (2021)

    MathSciNet  MATH  Article  Google Scholar

  26. Hammersley, W., Siska, D., Szpruch, L.: Mckean-vlasov SDEs under measure dependent Lyapunov conditions. Ann. Inst. H. Poincaré, Probab. Statist. 57, 1032–1057 (2021)

    MathSciNet  MATH  Article  Google Scholar

  27. Hao, T., Li, J.: Mean-field SDEs with jumps and nonlocal integral-PDEs. Nonlinear Diff. Equ. Appl. 23, Art. 17, 51 (2016)

    MathSciNet  MATH  Google Scholar

  28. Herrmann, S., Imkeller, P., Peithmann, D.: Large deviations and a Kramers' type law for self-stabilizing diffusions. Ann. Appl. Probab. 18, 1379–1423 (2008)

    MathSciNet  MATH  Article  Google Scholar

  29. Hong, W., Li, S., Liu, W.: Large deviation principle for McKean-Vlasov quasilinear stochastic evolution equations. Appl. Math. Optim. suppl. 84 (1), S1119–S1147 (2021)

    MathSciNet  MATH  Article  Google Scholar

  30. Huang, X., Song, Y.: Well-posedness and regularity for distribution dependent SPDEs with singular drifts. Nonlinear Analysis 203, 112167 (2021)

    MathSciNet  MATH  Article  Google Scholar

  31. Huang, X., Röckner, M., Wang, F. Y.: Nonlinear Fokker-Planck equations for probability measures on path space and path-distribution dependent SDEs. Discrete Contin. Dyn. Syst. 39, 3017–3035 (2019)

    MathSciNet  MATH  Article  Google Scholar

  32. Huang, X., Wang, F. Y.: Distribution dependent SDEs with singular coefficients. Stoch. Proc. Appl. 129, 4747–4770 (2019)

    MathSciNet  MATH  Article  Google Scholar

  33. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes amsterdam: North-Holland Publishing Company (1981)

  34. Jabin, P. E., Wang, Z.: Quantitative estimates of propagation of chaos for stochastic systems with \(w^{-1,} \infty \) kernels. Invent. Math. 214, 523–591 (2018)

    MathSciNet  MATH  Article  Google Scholar

  35. Jacod, J., Shiryaev, A. N.: Limit Theorems for Stochastic Processes. Springer, Berlin (1987)

    MATH  Book  Google Scholar

  36. Jourdain, B., Méléard, S., Woyczynski, W. A.: Nonlinear SDEs driven by lévy processes and related PDEs. ALEA Lat. Am. J. Probab. Math. Stat. 4, 1–29 (2008)

    MathSciNet  MATH  Google Scholar

  37. Kac, M.: Foundations of kinetic theory. Proc. 3rd Berkeley Sympos. Math. Statist. Probability 3, 171–197 (1956)

    MathSciNet  MATH  Google Scholar

  38. Kac, M.: Probability and Related Topics in the Physical Sciences. Interscience Publishers, New York (1958)

    Google Scholar

  39. Li, J.: Mean-field forward and backward SDEs with jumps and associated nonlocal quasi-linear integral-PDEs. Stoch. Proc. Appl. 128, 3118–3180 (2018)

    MathSciNet  MATH  Article  Google Scholar

  40. Liang, M., Majka, B., Wang, J.: Exponential ergodicity for SDEs and McKean-Vlasov processes with lévy noise. Ann. Inst. H. Poincaré, Probab. Statist. 57, 1665–1701 (2021)

    MATH  Article  Google Scholar

  41. Liu, W., Rockner, M.: Stochastic partial differential equations: an introduction. Universitext. Springer, Cham, 2015. vi+ 266 pp. ISBN: 978-3-319-22353-7; 978-3-319-22354-4

  42. Liu, W., Wu, L.: Large deviations for empirical measures of mean-field gibbs measures. Stoch. Proc. Appl. 130, 503–520 (2020)

    MathSciNet  MATH  Article  Google Scholar

  43. Liu, W., Wu, L., Zhang, C.: Long-time behaviors of mean-field interacting particle systems related to McKean-Vlasov equations. Commun. Math. Phys. 387, 179–214 (2021)

    MathSciNet  MATH  Article  Google Scholar

  44. Malrieu, F.: Logarithmic sobolev inequalities for some nonlinear PDE's. Stoch. Proc. Appl. 95, 109–132 (2001)

    MathSciNet  MATH  Article  Google Scholar

  45. Malrieu, F.: Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab. 13, 540–560 (2003)

    MathSciNet  MATH  Article  Google Scholar

  46. Matoussi, A., Sabbagh, W., Zhang, T.: Large deviation principle of obstacle problems for Quasilinear Stochastic PDEs. Appl. Math. Optim. 83, 849–879 (2021)

    MathSciNet  MATH  Article  Google Scholar

  47. McKean, H. P.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Nat. Acad. Sci. U.S.A. 56, 1907–1911 (1966)

    MathSciNet  MATH  Article  Google Scholar

  48. Mehri, S., Scheutzow, M., Stannat, W., Zangeneh, B. Z.: Propagation of chaos for stochastic spatially structured neuronal networks with fully path dependent delays and monotone coefficients driven by jump diffusion noise. Ann. Appl. Probab. 30(1), 175–207 (2020)

    MathSciNet  MATH  Article  Google Scholar

  49. Méléard, S.: Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models. Lect. Notes Math, p 1996. Springer, Berlin (1627)

    Google Scholar

  50. Mishura, Y. S., Veretennikov, A. Y.: Existence and uniqueness theorems for solutions of McKean-Vlasov stochastic equations. Theor. Probability Math. Statist. 103, 59–101 (2020)

    MATH  Article  Google Scholar

  51. Neelima, D., Biswas, S., Kumar, C., dos Reis, G., Reisinger, C.: Well-posedness and tamed Euler schemes for McKean-Vlasov equations driven by Lévy noise. arXiv:https://arxiv.org/pdf/2010.08585

  52. Röckner, M., Zhang, X.: Well-posedness of distribution dependent SDEs with singular drifts. Bernoulli 27, 1131–1158 (2021)

    MathSciNet  MATH  Article  Google Scholar

  53. Röckner, M., Schmuland, B., Zhang, X.: Yamada-watanabe theorem for stochastic evolution equations in infinite dimensions. Condensed Matter Physics 11, 247–259 (2008)

    Article  Google Scholar

  54. Ren, J., Zhang, X.: Freidlin-wentzell's large deviations for stochastic evolution equations. J. Funct. Anal. 254, 3148–3172 (2008)

    MathSciNet  MATH  Article  Google Scholar

  55. Song, Y.: Gradient estimates exponential ergodicity for mean-field SDEs with jumps. J. Theoret. Probab. 33, 201–238 (2020)

    MathSciNet  MATH  Article  Google Scholar

  56. Suo, Y., Yuan, C.: Central Limit Theorem and Moderate Deviation Principle for McKean-Vlasov SDEs. Acta Applicandae Mathematicae 175(16), 19 (2021)

    MathSciNet  MATH  Google Scholar

  57. Sznitman, A. S.: Topics in propagation of chaos. In École d'Été de probabilités de Saint-Flour XIX-1989. Lecture Notes in Math. 1464, 165–251 (1991)

    MathSciNet  Article  Google Scholar

  58. Wang, R., Zhai, J., Zhang, T.: A moderate deviation principle for 2-D stochastic Navier-Stokes equations. J. Differential Equations 258, 3363–3390 (2015)

    MathSciNet  MATH  Article  Google Scholar

  59. Xu, T., Zhang, T.: On the small time asymptotics of the two-dimensional stochastic Navier-Stokes equations. Ann. Inst. Henri poincaré Probab. Stat. 45(4), 1002–1019 (2009)

    MathSciNet  MATH  Article  Google Scholar

  60. Yang, X., Zhai, J., Zhang, T.: Large deviations for SPDEs of jump type. Stochastics and Dynamics, 15 (2015) Article ID 1550026, 30 pages, https://doi.org/10.1142/S0219493715500264

  61. Zhai, J., Zhang, T.: Large deviations for 2-D stochastic Navier-Stokes equations driven by multiplicative lévy noises. Bernoulli 21, 2351–2392 (2015)

    MathSciNet  MATH  Article  Google Scholar

  62. Zhang, T.: On the small time asymptotics of diffusion processes on Hilbert spaces. Ann. Probab. 28(2), 537–557 (2000)

    MathSciNet  MATH  Article  Google Scholar

  63. Zhao, H.: Yamada-watanabe theorem for stochastic evolution equation driven by Poisson Random Measure. ISRN Probability and Statistics 2014, 7 (2014). Article ID 982190

    MATH  Article  Google Scholar

Download references

Author information

Authors and Affiliations

Corresponding author

Correspondence to Jianliang Zhai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tusheng Zhang and Jianliang Zhai's research is supported by NSFC (No. 11971456, 12131019, 11721101), School Start-up Fund (USTC) KY0010000036, the Fundamental Research Funds for the Central Universities (No. WK3470000016).

Yulin Song is supported by NSFC (No. 11971227, 11790272).

Wei Liu is supported by NSFC (No. 12071361, 12131019, 11731009), the Fundamental Research Funds for the Central Universities (No. 2042020kf0031, 2042020kf0217).

Appendix

Appendix

The Proof of Theorem 3.6

For the fixed JP r(D([0,T],H)), because of the existence of the strong solution, by the Yamada-Watanabe theorem (see [53] for the Wiener case and [63] for the PRM case), there exists a unique map \({\Gamma }_{J}:C([0,T],K)\times M_{FC}([0,T]\times Z)\rightarrow \mathbb {D}\) such that for any \((\bar {\Omega },\bar {\mathcal {F}},\bar {P},\{\bar {\mathcal {F}}_{t},\ t\in [0,T]\},\bar {W},\eta )\) satisfying that

  • \((\bar {\Omega },\bar {\mathcal {F}},\bar {P})\) is a complete probability space;

  • \(\{\bar {\mathcal {F}}_{t},\ t\in [0,T]\}\) is a right continuous filtration on \(\{\bar {\Omega },\bar {\mathcal {F}}\}\) augmented by the \(\bar {P}\)-zero sets;

  • on the stochastic basis \((\bar {\Omega },\bar {\mathcal {F}},\bar {P},\{\bar {\mathcal {F}}_{t},\ t\in [0,T]\})\), \(\bar {W}=\{\bar {W}(t),t\in [0,T]\}\) is a cylindrical Brownian motion taking values in K, η is a PRM with intensity measure L e b T ν;

  • \(\bar {W}\) and η are independent;

the following properties hold:

  • (A0) \(\{{\Gamma }_{J}(\bar {W},\eta )(t),t\in [0,T]\}\) is an \(\{\bar {\mathcal {F}}_{t},\ t\in [0,T]\}\)-adapted process with paths in \(\mathbb {D}\);

  • (A1)

    $$ \begin{array}{@{}rcl@{}}{{\int}_{0}^{T}}\|b(t,{\Gamma}_{J}(\bar{W},\eta),J)\|_{E}\mathrm{d} t + {{\int}_{0}^{T}}\|\sigma(t,{\Gamma}_{J}(\bar{W},\eta),J)\|^{2}_{\mathcal{L}_{2}}\mathrm{d} t + & {{\int}_{0}^{T}}{\int}_{Z}\|G(t,{\Gamma}_{J}(\bar{W},\eta),J,z)\|^{2}_{H}\nu(\mathrm{d} z)\mathrm{d} t\\ &<\infty,\ \bar{P}\text{-a.s.;}\end{array} $$

  • (A2) as a stochastic equation on E one has

    $$ \begin{array}{@{}rcl@{}} {\Gamma}_{J}(\bar{W},\eta)(t) &=& h+{{\int}_{0}^{t}}b(s,{\Gamma}_{J}(\bar{W},\eta),J)\mathrm{d} s + {{\int}_{0}^{t}}\sigma(s,{\Gamma}_{J}(\bar{W},\eta),J)\mathrm{d} \bar{W}(s) \\ &&+ {{\int}_{0}^{t}}{\int}_{Z}G(s,{\Gamma}_{J}(\bar{W},\eta),J,z)\widetilde{\eta}(\mathrm{d} z,\mathrm{d} s),\ t\in[0,T],\ \bar{P}\text{-a.s.} \end{array} $$

    where \(\widetilde {\eta }\) is the corresponding compensated PRM with respect to η.

Therefore we have Y = Γ J (W,N 1), since (Y,J) is a solution of (3.1) and pathwise uniqueness holds with the fixed J.

For any given \(m\in (0,\infty )\) and \(u=(\phi ,\psi )\in \mathcal {S}^{m}_{1}\times \mathcal {S}^{m}_{2}\), ∀t ∈ [0,T], let

$$ \begin{array}{@{}rcl@{}} \mathcal{M}_{t}(\phi):=\exp\Big(-{{\int}_{0}^{t}}\langle\phi(s),\mathrm{d} W(s)\rangle_{K}-\frac{1}{2}{{\int}_{0}^{t}}\|\phi(s)\|^{2}_{K}\mathrm{d} s\Big) \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} \mathcal{E}_{t}(\psi):=\exp\Big({{\int}_{0}^{t}}{\int}_{Z}{\int}_{[0,\psi]}\log \varphi(s,z)N(\mathrm{d} r,\mathrm{d} z,\mathrm{d} s)+{{\int}_{0}^{t}}{\int}_{Z}{\int}_{[0,\psi]}(-\varphi(s,z)+1)\mathrm{d} r\nu(\mathrm{d} z)\mathrm{d} s\Big), \end{array} $$

where \(\varphi :=\frac {1}{\psi }\). Then we have, on the probability space \(({\Omega },\mathcal {F},P)\)

  • \(\{{\mathscr{M}}_{t}(\phi ),\ t\in [0,T]\}\) is a \(\mathbb {F}\)-martingale;

  • \(\{\mathcal {E}_{t}(\psi ),\ t\in [0,T]\}\) is a \(\mathbb {F}\)-martingale by Theorem 6.1 in [10];

  • moreover, \(\{{\mathscr{M}}_{t}(\phi )\mathcal {E}_{t}(\psi ),\ t\in [0,T]\}\) is a \(\mathbb {F}\)-martingale on \(({\Omega },\mathcal {F},P)\), thanks to the independence of W and N on \(({\Omega },\mathcal {F},P)\).

Let

$$ \begin{array}{@{}rcl@{}} Q(O):={\int}_{O}\mathcal{M}_{T}(\phi)\mathcal{E}_{T}(\psi)\mathrm{d} P,\ \forall O\in\mathcal{F}, \end{array} $$

((5.96))

then

  • (Q1) Q is a probability measure on \(({\Omega },\mathcal {F})\);

  • (Q2) the measures Q and P are equivalent;

  • (Q3) By the Girsanov Theorem (see, e.g., [35, Theorem III.3.24], [16, Appendix A.1]), under the probability space \(({\Omega },\mathcal {F},\mathbb {F},Q)\), \((W(\cdot )+{\int \limits }_{0}^{\cdot }\phi (s)\mathrm {d} s,N^{\psi })\) has the same law as that of (W(⋅),N 1) on \(({\Omega },\mathcal {F},\mathbb {F},P)\).

Let

$$ \begin{array}{@{}rcl@{}} Y^{u}:={\Gamma}_{J}(W(\cdot)+{\int}_{0}^{\cdot}\phi(s)\mathrm{d} s,N^{\psi}). \end{array} $$

((5.97))

By the property of Γ J , it follows that (under the probability Q),

  • (B0) Y u = {Y u (t),t ∈ [0,T]} is an \(\mathbb {F}\)-adapted process with paths in \(\mathbb {D}\);

  • (B1) \({{\int \limits }_{0}^{T}}\|b(t,Y^{u}, J)\|_{E}\mathrm {d} t + {{\int \limits }_{0}^{T}}\|\sigma (t,Y^{u}, J)\|^{2}_{{\mathscr{L}}_{2}}\mathrm {d} t + {{\int \limits }_{0}^{T}}{\int \limits }_{Z}\|G(t,Y^{u},J,z)\|^{2}_{H}\nu (\mathrm {d} z)\mathrm {d} t <\infty ,\ Q\text {-a.s.;}\)

  • (B2) as a stochastic equation on E one has

    $$ \begin{array}{@{}rcl@{}} Y^{u}(t) &=& h+{{\int}_{0}^{t}}b(s,Y^{u}, J)\mathrm{d} s + {{\int}_{0}^{t}}\sigma(s,Y^{u}, J)\mathrm{d} \Big(W(s)+ {{\int}_{0}^{s}}\phi(l)\mathrm{d} l\Big)\\ &&+ {{\int}_{0}^{t}}{\int}_{Z}G(s,Y^{u}, J,z)\Big(N^{\psi}(\mathrm{d} z,\mathrm{d} s)-\nu(\mathrm{d} z)\mathrm{d} s\Big),\ t\in[0,T],\ Q\text{-a.s.} \end{array} $$

    ((5.98))

Since stochastic integrals against semimartingales remain the same with respect to a class of equivalent probability measures and since Q and P are equivalent, we conclude that under the probability P, Y u fulfills the equation (5.98) as well. This completes the proof of Theorem 3.6.

Rights and permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Song, Y., Zhai, J. et al. Large and Moderate Deviation Principles for McKean-Vlasov SDEs with Jumps. Potential Anal (2022). https://doi.org/10.1007/s11118-022-10005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI : https://doi.org/10.1007/s11118-022-10005-0

Keywords

  • Large deviation
  • Moderate deviation
  • Weak convergence method
  • McKean-Vlasov equation
  • Lévy noise

Mathematics Subject Classification (2010)

  • 60F10
  • 60H10
  • 60H15
  • 60J75
  • 37L55

williamswhouthearied.blogspot.com

Source: https://link.springer.com/article/10.1007/s11118-022-10005-0

0 Response to "One Stage Deviation Principle in Continuous Stochastic Games"

Postar um comentário

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel